Using Nets in Dedekind, Monotone, or Scott Incomplete Ordered Fields and Definability Issues

نویسندگان

  • MOJTABA MONIRI
  • JAFAR S. EIVAZLOO
چکیده

Given a Dedekind incomplete ordered field, a pair of convergent nets of gaps which are respectively increasing or decreasing to the same point is used to obtain a further equivalent criterion for Dedekind completeness of ordered fields: Every continuous one-to-one function defined on a closed bounded interval maps interior of that interval to the interior of the image. Next, it is shown that over all closed bounded intervals in any monotone incomplete ordered field, there are continuous not uniformly continuous unbounded functions whose ranges are not closed, and continuous 1-1 functions which map every interior point to an interior point (of the image) but are not open. These are achieved using appropriate nets cofinal in gaps or coinitial in their complements. In our third main theorem, an ordered field is constructed which has parametrically definable regular gaps but no ∅-definable divergent Cauchy functions (while we show that, in either of the two cases where parameters are or are not allowed, any definable divergent Cauchy function gives rise to a definable regular gap). Our proof for the mentioned independence result uses existence of infinite primes in the subring of the ordered field of generalized power series with rational exponents and real coefficients consisting of series with no infinitesimal terms, as recently established by D. Pitteloud. 1. A Dedekind Incompleteness Feature via Convergent Nets of Gaps A cut of an ordered field F is a subset which is downward closed in F . By a nontrivial cut, we mean a nonempty proper cut. A nontrivial cut is a gap if it does not have a least upper bound in the field. An ordered field is Archimedean (has no infinitesimals) just in case it can be embedded in R. The following fact presents some of the well known characterizations of the ordered field of real numbers. A more delicate equivalent condition is presented in Theorem 1.2. 2000 Mathematics Subject Classification. 03C64, 12J15, 54F65.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Nets in Dedekind , Monotone , or Scott

Given a Dedekind incomplete ordered field, a pair of convergent nets of gaps which are respectively increasing or decreasing to the same point is used to obtain a further equivalent criterion for Dedekind completeness of ordered fields: Every continuous one-to-one function defined on a closed bounded interval maps interior of that interval to the interior of the image. Next, it is shown that ov...

متن کامل

Bhaskar-Lakshmikantham type results for monotone mappings in partially ordered metric spaces

In this paper, coupled xed point results of Bhaskar-Lakshmikantham type [T. Gnana Bhaskar, V.Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, NonlinearAnalysis 65 (2006) 1379-1393] are extend, generalized, unify and improved by using monotonemappings instead mappings with mixed monotone property. Also, an example is given to supportthese improvements.

متن کامل

Dedekind cuts of Archimedean complete ordered abelian groups

A Dedekind cut of an ordered abelian group G is a pair (X, Y) of nonempty subsets of G where Y=G−X and every member of X precedes every member of Y. A Dedekind cut (X, Y) is said to be continuous if X has a greatest member or Y has a least member, but not both; if every Dedekind cut of G is a continuous cut, G is said to be (Dedekind) continuous. The ordered abelian group R of real numbers is, ...

متن کامل

An Ordered Category of Processes

Processes can be seen as relations extended in time. In this paper we want to investigate this observation by deriving an ordered category of processes. We model processes as co-algebras of a relator on Dedekind category up to bisimilarity. On those equivalence classes we define a lower semi-lattice structure and a monotone composition operation.

متن کامل

Remarks on some recent M. Borcut's results in partially ordered metric spaces

In this paper, some recent results established by Marin Borcut [M. Borcut, Tripled fixed point theorems for monotone mappings in partially ordered metric spaces, Carpathian J. Math. 28, 2 (2012), 207--214] and [M. Borcut, Tripled coincidence theorems for monotone mappings in partially ordered metric spaces, Creat. Math. Inform. 21, 2 (2012), 135--142] are generalized and improved, with much sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002